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Abstract

We present an algorithm for interactively extracting and rendering
iso-surfaces of large volume datasets in a view-dependent optimal
fashion. A recursive tetrahedral mesh subdivision scheme, based
on longest edge bisection, is used to hierarchically decompose the
data into a multi-resolution structure. This data structure allows fast
extraction of arbitrary iso-surfaces to within user specified view-
dependent error bounds. A compact encoding of the mesh subdi-
vision optimizes memory usage and processor performance neces-
sary for large datasets. A data layout scheme based on hierarchical
space filling curves provides optimal access to the data in a cache
coherent manner.

Keywords: View-Dependent Rendering, Iso-Surfaces, Multireso-
lution Tetrahedral Meshes, Multiresolution Techniques

1 Introduction

Iso-surfaces are a fundamental method for visualizing volume
datasets. Iso-surface extraction is a well developed field starting
with [Lorensen and Cline 1987]. Fast extraction methods have been
developed in [Bajaj et al. 1996], [Chiang and Silva 1997], and [Ba-
jaj et al. 1999]. Recent research on distance fields and volumetric
representations for objects [Frisken et al. 2000], [Ferley et al. 2000],
[Kobbelt et al. 2001] and reconstructing objects using implicit func-
tions [Carr et al. 2001] shows how volumetric representations can
be effectively used to describe objects. Given a volume represen-
tation of an object such as a CT scan, MRI scan, or distance field,
the object can be rendered by extracting iso-contours from the vol-
ume. For large volumes of size 5123 or greater, multiresolution
view-dependent techniques that exploit frame to frame coherence
are essential for interactive rendering and exploration.

We use the subdivision of a tetrahedral mesh via longest edge bi-
section to build a multi-resolution hierarchy of the volume dataset.

*{gregorski1,duchaine,pl,pascucci } @lInl.gov
fkijoy @ucdavis.edu

Figure 1: Cyberware Igea Model. Size = 5123 voxels, Screen Error
= 0.5 pixels, 70K triangles

The tet subdivision scheme that we use is described in detail in
[Zhou et al. 1997], [Gerstner and Rumpf 2000], and [Gerstner
and Pajarola 2000]. We combine the bottom-up and top-down
traversal schemes presented in these papers to create an adap-
tively refinable tetrahedral mesh. This adaptive mesh supports the
dual queue splitmerge algorithm as described in the ROAM sys-
tem[Duchaineau et al. 1997] for view-dependent terrain visualiza-
tion. It has fast coarsening and refinement operations which allow
for strict frame to frame triangle counts, progressive optimization of
mesh quality, and guaranteed frame rates. All of these are essential
for interactive view-dependent rendering.

Each tet in our mesh approximates a portion of the volume us-
ing a linear interpolant. Volume representations using tetrahedral
meshes have been developed in [Trotts et al. 1999], [Cignoni et al.
1997], and [Cignoni et al. 2000]. At run time, the splimerge
refinement algorithm is used to create a lower resolution dataset
that approximates the original dataset to within a given error toler-
ance. The error tolerance is a measure of how much an iso-surface
drawn through the lower resolution dataset deviates from the finest
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Figure 2: Three Subdivision Phases.

level iso-surface. The error tolerance is measured in pixels on the
view screen. The lower resolution dataset is a set of tets, possibly
from different levels of the hierarchy that approximates the volume
dataset to within the error tolerance. This set of tets is free from
cracks and T-intersections, and defines a C? continuous, piecewise
linear approximation to the original data. The iso-surface is ex-
tracted from the tets in this lower resolution representation using
linear interpolation. The precomputation of min/max ranges over
groups of tets called Diamonds (Section 2.1) allows portions of the
volume that do not contain the iso-surface to be culled quickly.

Crack fixing between levels of detail is done easily within the
mesh subdivision scheme. Space subdivision schemes such as oc-
trees require separate steps to fix the cracks in the surfaces that re-
sult when cells from different levels in the octree share a face. The
tet mesh subdivision scheme easily solves this problem by ensuring
that a face touches at most two tets at all times. The crack fixing
algorithm is described in Section 2.4.

In Sections 4 and 5, we describe the data structures used to im-
plement the split/merge refinement, and give an efficient, compact
method to encode the mesh’s structure. This encoding of the mesh
structure allows the refinement process to be implemented with fast
integer operations.

Fast data location and retrieval are achieved by reordering the
data on disk and in main memory to follow the ordering of data
indicated by the structure of the mesh subdivision. The data lay-
out scheme is discussed in Section 6. Since the view-dependent
refinement is driven by the way the volume dataset is subdivided,
ordering the dataset on disk and in memory to match this order im-
proves the performance of the memory system which is important
when dealing with large datasets.

2 Longest Edge Bisection Subdivision

Here we establish terminology to describe the mesh components.
A tet is described by a level and a phase based on when it is cre-
ated in the mesh refinement. The process begins at level 0, phase
0 with the initial configuration of a cube divided into 6 tets. Figure
2 illustrates the three phases of the refinement process. After three
subdivisions, the level is incremented by 1. After n subdivisions,
the phase is n mod 3 and the level is [#/3]. The number of sub-
divisions is called the subdivision level. In the following sections,
level refers to the [n/3] not the subdivision level. The split edge
of a tet is the tet’s longest edge. In each phase, a tet is subdivided
into two children at the midpoint of the split edge. This midpoint
is called the tet’s split vertex. A tet can be referenced either by its
split edge or its split vertex and the other two vertices not on the
split edge.

2.1 Diamonds

When a tet is split, all the tets around its split edge need to be split
to fix the continuity on the mesh and avoid T-intersections. A group

Type | Tets(phase,level) Parents  Children
0 6(0,L) 32L-1) 6(1,L)
1 4(1,L) 2(0,L) 4(2,L)
2 8(2,L) 4(1,L) 8(0,L+1)

Table 1: Number,phase, and level of tets, parents, and children for
each type of diamond. L is the level of the diamond.

of tets that share a split edge is called a diamond. A diamond’s split
edge and split vertex are equivalent to the split edge and split vertex
of its tets. All diamonds in the mesh can be uniquely identified by
their split edge or split vertex. In later sections, a diamond will be
referenced by its split edge or split vertex.

Tets are grouped into diamonds to simplify the refinement pro-
cess so that cracks in the mesh are easily fixed. Simple recur-
sive top-down refinement schemes that subdivide tets can introduce
cracks or T-intersection to the mesh unless they take care to refine
all of the tets that share a split edge at the same time. By group-
ing tets into diamonds, we can easily locate all tets around a split
edge. Splitting a diamond is equivalent to splitting all of the tets
in the diamond. The crack free refinement process is described in
detail in Section 2.4 All tets within a diamond have the same level
and phase. The phase and level of a diamond are equivalent to the
phase and level of a tet. There is one type of diamond for each
phase. Table 1 lists the number of tets, their phase and level for
each diamond type.

1. The Phase 0 diamond is shown in Figure 3. The split edge
is (sv0,svl). There are six tets around a major diagonal of a
cube. One of the tets is sv0,sv1,v2, pl), the other 5 can be
created by rotating this tet around the axis sv0,sv1.

2. The Phase 1 diamond is shown in Figure 4. There are four
phase 1 tets around a face diagonal. One of the tets is
(vO,v1,v2,v3), the other three tets can be created by rotat-
ing tet this tet 90, 180, and 270 degrees around the diamond’s
split edge (vO,v1).

3. The Phase 2 diamond is shown in Figure 5. There are eight
tets around an edge of a cube. The eight tets in the diamond
can be created by rotating tet (vO,v1,v2,v3) around the dia-
mond’s split edge (vO,v1) in 45 degree increments.

There is one diamond associated with each data point in the vol-
ume dataset. The 8 diamonds at the corners of the root diamond
(i.e. the diamond at level O phase 0) are allocated but never used.
The diamond contains the following information:

1. The type of the diamond based on the direction of its split
edge.

2. Whether or not the diamond is a leaf, on a boundary of the
root diamond, or a root diamond.

The type of a diamond is determined by its split edge (SVy, SV)),
where SV, is the first vertex on the split edge. There are 26 different
directions; there are 8 different directions for the phase 0 diamonds,
12 for the phase 1 diamonds (4 each on the XY, XZ, and YZ planes),
and 6 for the phase 2 diamonds. For example, the split edge from
(64,64,0) to (64,0,64) gives the vector (0,-64,64). This corresponds
to the direction vector (0,-1,1). The 26 directions come from the
different combinations for a vector (i, j,k) when the entries are re-
stricted to -1, 0, and 1. The vector (0,0,0) is not a valid split edge
because it indicates that the vertices on the split edge are identical.
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Figure 3: Phase 0 diamond and its parents.
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Figure 4: Phase 1 diamond and its parents.

2.2 Parent Diamonds

A tet at subdivision level i is created when a tet from subdivision
level i — 1 is subdivided. For a diamond D, the diamonds that need
to be split to create all of D’s tets are called D’s parents. The parents
of a diamond are diamonds from the previous subdivision level. The
parent information is summarized in Table 1. Figures 3 - 5 show the
parents for the three types of diamonds. In all of the pictures, the
split edge is (sv0,sv1), the split vertex is SV, and the parents are
shown as p0, pl,.... As stated earlier, a diamond is referenced by
its split vertex.

2.3 Child Diamonds

For a diamond D, the diamonds that are created when D is split are
called D’s children. The children of a diamond are diamonds from
the next subdivision level. The child information is summarized in
Table 1.

1. Phase 0: The children are located at the centers of the di-
amond’s exterior faces. Three of the children of a phase 0
diamond are shown in Figure 6. The other three exist on the
other faces of the cube.

2. Phase 1: The children are located at the centers of the edges
of the face containing the split vertex. The children for phase
1 diamonds in the XZ and YZ plane are shown in Figure 7.
Diamond p0 has children c0 - ¢3, and diamond p1 has children
¢3 - ¢6. The children for diamonds in the XY plane are found
in a similar manner.

Figure 5: Phase 2 diamond and its parents.

3. Phase 2: The children are the diamonds from level i + 1 that
touch the parent diamond’s split edge. In Figure 8, four of the
children for diamond pO are c0 - ¢3. The other four children
are the centers of the four octants that come out of the page.
The red arrows indicate the split edges of the children.

c0

cl

c2

Figure 6: Children of Phase 0 diamond.

2.4 Split/Merge Refinement

As described in Section 1, the tet mesh supports the dual queue
splitmerge refinement strategy as described in the ROAM sys-
tem[Duchaineau et al. 1997]. In our system, we use this strategy be-
cause it provides more frame to frame coherence than the top down
split only algorithm. In most interactive applications, the viewing
position does not change a significant amount between consecutive
frames. In frame i+ 1, many diamonds from frame i will have a
view-dependent error that is still within the current error tolerance.
These diamonds can be reused in frame i + 1. A small fraction of
the diamonds will need to be split or merged to satisfy the error tol-
erance. In most cases, a top down algorithm that ignores the mesh
from frame i would perform a much larger number of splits to cre-
ate the mesh for frame i+ 1 than the number of splits and merges



Figure 8: Children of Phase 2 diamond.

performed by the split/merge algorithm. By starting the refinement
process for frame i+ 1 with the mesh from frame i instead of the
base mesh, a large number of splits and merges do not have to be
done.

In a preprocessing stage, we compute the following information,
necessary to drive the refinement process, for each diamond in the
hierarchy:

1. The diamond information. (See Section 2.1)
2. The iso-surface approximation error. (See Section 3)

3. The min and max data values within the diamond including
the diamond boundary. These are used to quickly determine
if a diamond contains the iso-surface during mesh refinement.

4. The gradient vector at the split vertex. The gradient vectors
are normalized and quantized into a single word.

The computation of the diamond information, min/max values
and gradients runs in O(ND) time, where ND is the number of dia-
monds in the mesh. The diamond information and min/max values
are computed by traversing the mesh in a top-down fashion. The
computation of the error values runs in O(NT) time, where NT
is the number of tets in the mesh. The number of tets is 6 times
the number of diamonds so the computation of the error values be-
comes fairly expensive for large datasets. The computations can
be easily parallelized, and were done on a multiprocessor SGI ma-
chine.

The current mesh is a set of tets that approximates the volume
dataset to within a certain view-dependent error bound. The split

Figure 9: Diamond d1 has 2 triangles in the mesh. Diamond d2 has
one triangle in the mesh.

queue holds the diamonds that these tets belong to. Each diamond
in the split queue contains flags indicating which of its tets are ac-
tually in the current mesh. These flags are called the diamond’s tet
flags. The reason for these flags is illustrated for the 2D case in
Figure 9. The mesh has four diamonds d0 — d3. Diamond d1 has
two triangles that are both in the mesh. Diamond d2 has two trian-
gles only one of which is in the current mesh. The triangle not in
the mesh is shown with the dashed lines. The diamond’s ret flags
are used to record this information. After the refinement process,
the iso-surface is extracted from the tets in the current mesh. This
is done by going through the diamonds split queue and examining
its ret flags to find the tets in the current mesh. The merge queue
holds the diamonds that can be merged. These are diamonds that
have been split and whose children have not been split.

At frame O the split queue is initialized with the base
configuration of 6 tets (i.e. the root diamond). The merge queue
is empty. At each frame, given a view-dependent error tolerance E,
the following steps are done when the viewpoint changes:

1. Diamonds not within the view frustum are marked as invis-
ible and diamonds that do not contain the iso-surface are
marked as empty; they are assigned a view-dependent error
of 0. View-dependent errors are recomputed for all other dia-
monds in the split and merge queues.

2. Diamonds in the split queue whose error is greater than E are
split. Diamonds in the merge queue whose error is less than E
are merged. Invisible and empty diamonds in the split queue
are never split. In the merge queue, they are the first diamonds
to be merged.

3. The refinement process is stopped when all diamonds in the
split queue have an error below E and all diamonds in the
merge queue have an error above E, or when the time allowed
for processing the current frame has elapsed.

4. The iso-surface is extracted from the tets in the current mesh
that belong to the visible, non-empty diamonds in the split
queue.

A diamond is split by splitting all of its tets and adding them
to the split queue. A tet is added to the split queue by creating an
entry in the split queue for its diamond and then setting the flag
which indicates that the tet is in the current mesh. When some of
the tets in a diamond do not exist (i.e. they are not in the current
mesh), it is necessary to create them before they can be split. This
is done by splitting the diamond’s parents that have not been split.
Lastly the diamond is removed from split queue and added to the
merge queue.




A diamond is merged by merging all of its tets and then adding
them to the split queue. A tet is merged by removing its two chil-
dren from the split queue. A tet is removed from the split queue by
locating its diamond’s entry in the split queue and unsetting the flag
that was set when the tet was added to the split queue. When a tet is
removed from the mesh, its diamond is checked to see if it has any
more tets in the current mesh. If not, the diamond is removed from
the split queue. Lastly, the diamond’s parents are checked to see if
they can be added to the merge queue. A diamond can be added to
the merge queue only if all of its children are in the split queue.

3 Error Metrics

Each diamond in the mesh has an approximation error, iso-surface
error, and a view-dependent error associated with it. The approxi-
mation error ae; for a tet is the maximum difference between the
linear approximation over the tet and the actual data values for the
points inside the tet. The approximation error aej, for a diamond
is the maximum of its tets’ approximation errors. Leaf tets have an
approximation error of 0 as do leaf diamonds.

The iso-surface error of a tet is the maximum deviation of an iso-
surface drawn through the tet from the actual iso-surface passing
through the tet. This calculation is illustrated in Figure 10 for the
1D case. The original function is f(x) and it is approximated by
I(x). The upper and lower bounds on the approximation, given by
the approximation error ae, are al(x) and a2(x). The iso-contour
for a given function value y is drawn. The iso-contour using /(x)
occurs at point @ where y = I(a). The actual iso-contour using f(x)
occurs the point b where y = f(b). The error in the iso-contour is
given by:

ie = |a—b| (1)
An upper bound u for the iso-surface error can be computed by:
u=ae/m, )

Where ae is the approximation error and m is slope of the linear
approximation /. As the slope of / increases, f converges to a ver-
tical line and is approximated with increasing accuracy by /. This
means that the approximation errors get smaller and smaller. As the
slope of [ decreases, the iso-contour approximation a and the actual
iso-contour b for a function value y can be far apart even if ae is
small. In higher dimensions, the slope of the approximation trans-
lates to the magnitude of the gradient. In 3D this is the gradient of
the field through a tetrahedron as given by its linear approximation.
The iso-surface error is clamped at the physical size of the tet be-
cause the iso-surface drawn through a tet can never be outside the
tet’s boundaries. The iso-surface error for a tetrahedron 7 is given
by:

ier =aer/||VT], 3)

The iso-surface error iej, for a diamond is the maximum of its tets’
iso-surface errors. The view-dependent error of a diamond is the
projection of its iso-surface error onto the view screen. This is done
by creating a sphere at the diamond’s split vertex of radius iej, and
projecting this sphere onto the view screen. The size of the pro-
jected sphere (i.e. width or height in pixels) is the view-dependent
error. Details on view-dependent error metrics can be found in
[Hoppe 1997] , [Lindstrom and Pascucci 2001], and [Luebke and
Erikson 1997]. As described in Section 2.4 the view-dependent er-
ror is updated for all diamonds within the view-frustum at the start
of each frame.

4 Data Structures

As stated in Section 2.4, we precompute the diamond information,
iso-surface approximation error, min, max values, and gradient vec-

Figure 10: Iso-Surface error calculation in 1D.
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Figure 11: Relationship between precomputed data, queue entries,
and queue hash table.

tor for each diamond. These values are stored on disk and mapped
to main memory at run time using the Unix mmap command. The
mmap function establishes a mapping between a process’s address
space and a virtual memory object represent as a disk file. This al-
lows us to keep in memory only the data that is currently being used
by the split/merge process and the iso-surface extraction process.
The diamond information is stored in one file. The data values and
gradients are stored in another file because they are used for extract-
ing and drawing the iso-surface but not for mesh refinement. The
error values, min, and max values are stored in another file because
they are used together in the mesh refinement process but not for
iso-surface extraction.

The split and merge queues are implemented as hash tables using
a fixed number of buckets and chaining to handle collisions. Each
bucket corresponds to a range of the projected screen space error
as measured in pixels. Each entry in the bucket corresponds to a
diamond whose screen space error falls within the bucket’s range.
At run time, a small fraction of the diamonds in the hierarchy are in
the split and merge queues. A separate hash table, the queue hash
table, is used to map diamond indices to their entries in the queue.
There is one hash table for the split queue and one hash table for
the merge queue. This second hash table is necessary because the
split and merge queues are ordered by view-dependent error. In or-



der to quickly locate a specific diamond in either queue, we need
to be able to access the queue based upon the (i, j,k) index of the
diamond which uniquely identifies a diamond. Accessing the dia-
monds in the queues based on view-dependent error would require
computing the view-dependent error, locating the bucket that the
diamond is in, and then traversing the bucket to get the appropriate
entry.

The data structures are illustrated in Figure 11. The hash table
maps a diamond index to an entry in the queue. The diamond index
associated with the queue entry maps back to the precomputed per
diamond information and the same hash table entry. When a tet is
added or removed from the mesh, its diamond’s index is used to lo-
cate the corresponding entry in the split queue via the split queue’s
hash table. The diamond’s rer flag associated with this tet is set or
unset. The flags are implemented as a single bit, and correspond
to the precomputed cell encodings for the diamond as described in
Section 5. Each bucket entry in the split and merge queues stores
the diamond’s level, (i, j,k) index, iso-surface and view-dependent
errors, invisible and empty bits (Section 2.4), and diamond infor-
mation (Section 2.1), and its ret flags. The iso-surface error and
diamond information are copied from the mmaped arrays of pre-
computed data.

Interpolation caching, computing the location of the iso-surface
within a tet and saving the interpolated positions and normals, is
done on a per tet basis as opposed to a per edge basis as done in
[Gerstner and Rumpf 2000]. When a tet is added to the split queue,
the iso-surface through it is computed and stored in the triangle
cache. Each element in the triangle cache stores 4 vertices and 4
normals vectors. The vertices are stored as shorts and the normal
vectors are stored as 10 bit quantities in a single word. The triangles
are cached in an array so that they are all in a contiguous region of
memory. New triangles are appended to the end of the array. Tri-
angles are removed from cache by replacing the removed triangle
with the triangle at the end of the array. This caching method does
not reuse interpolations along edges, and it duplicates normals and
vertices along edges. Its advantage is that it has better memory co-
herence than hash table based caches. In each frame the mesh is
drawn simply by traversing the triangle cache.

5 Mesh Encoding

The mesh structure can be encoded in a very compact manner as-
suming that the data points lieon a 2" + 1 x 2"+ 1 x 2" + 1 grid.
This is because the offsets to compute the tet vertices, parents and
children of a diamond are all powers of two relative to the split ver-
tex of the diamond. Data that do not lie on this type of grid can be
embedded in a virtual grid of the proper size.

A diamond is represented as an (i, j, k) index. This index is how
the diamond information would be accessed if it were stored in a
C-style 3D array. The vertices on the split edge of a diamond are
encoded in a single byte as an offset vector from the split vertex. For
example, the split edge with SV,, = (64,64,0) and SV, = (64,0,64)
has the vector (0, —64,64) and split vertex (64,32,32). Normaliz-
ing this vector yields (0,—1,1). These values are stored as 2 bit
quantities in a single byte. SV,, and SV, are computed by rescaling
the normalized vector and adcfinglsubu-acting it from the split ver-
tex. In this case,(0,~1,1) would be rescaled to (0,—32,32). The
rescaling factor is easily determined from the level of the diamond.
For a mesh with [ levels, the scaling factor for a diamond at level
j is given by: 2(~/=1), (The subdivision starts at level 0.) Since
this factor is always a power of 2, computing the indices is done
using only shifts and adds. The split edge encodings are stored in
a lookup table and accessed at run time based upon the type of the
diamond. Since a diamond is identified by its split vertex, the ver-
tices on the split edge can be computed by knowing the diamond’s
type and level.

Time Operation #Elements  Elem/Sec

0.048 | Cull/Priority 47,339 976,606 |
0.140 | Colored Draw 50,001 357,692
0.173 | Textured Draw 50,001 289,023
0.01 | SplivMerge  15-150  1500-15,000

Table 2: Timings results for algorithm sections.

The parents, tets, and children of a diamond are also encoded
relative to the split vertex of the diamond and stored in a lookup
table. Since two of a tets’s vertices are the vertices on the split edge,
they do not need to be encoded again. The other two vertices of the
tet are encoded and stored in a lookup table in the same way that
the split edge is encoded. For any diamond, the (i, j, k) index for a
parent, child or tet vertex can be computed from the diamond’s split
vertex and the proper encoding. There is one set of encodings for
each of the 26 types of diamonds. Using these indices and offsets
to access the diamonds eliminates the need for a diamond to have
pointers to its parents and children.

6 Memory Layout

In order to improve cache performance and effectively utilize the
available memory bandwidth we arrange our data on disk and in
memory in a manner that follows the data ordering indicated by
the mesh subdivision. This data layout scheme and its performance
benefits are detailed in [Pascucci 2000]. [Lindstrom and Pascucci
2001] describe different layout schemes for terrain rendering appli-
cations that are easily extended to volumetric data. Out scheme is
based on hierarchical Lebesgue Z space filling curves and is called
z — order because the curve looks like the letter Z. The (i, j, k) in-
dices used in the mesh refinement process are easily converted to
the indices for the new data layout scheme via lookup tables. The
precomputed data described in Section 2.4 is stored on disk in this
manner.

7 Results

We have tested our algorithms on an SGI Octane workstation with
two 300 MHZ R12000 processors, 896 MB of memory and an ESI
graphics board and an SGI Onyx with 44 250 MHZ R10000 pro-
cessors and IR2 graphics boards. At run time the algorithm uses
one processor and one graphics pipe. The preprocessing was done
in parallel on an SGI Onyx.

Table 2 shows timings results for the individual sections of the
algorithm. The Cull/Priority operation is the recomputation of the
diamond’s visibility and view-dependent errors. For these results
there were no culled diamonds; the visibility test and the error cal-
culation were done for every diamond in the split and merge queues.
The colored draw and textured draw operations render the geome-
try using colors and textures respectively. The objects are textured
using a sphere map. The Spli/Merge operation is the number of
splits and merges that can be done in a period of time. For these
results we fixed the time frame at 10ms. The large variance in the
number of splits and merges is due to the varying complexity of the
operations. Some splits may have to locate and split many parents,
and some merges may have to locate and examine many children.
These results are taken from the SGI Octane workstation.

The first example is the rocker arm dataset taken from the Cy-
berware samples page. The initial polygon model was converted
to a 256x256x256 distance field with floating point samples. The
full resolution iso-contour contains 1,586,604 triangles. Our second
example is the igea head dataset also from the Cyberware samples



" Dataset Machine Format Dims Iris/Frame
Rocker Arm | Octane float 256° 250K
IgeaHead | OnyxIR2  float  512° 500K

Table 3: Triangle counts for test datasets.

-»

Figure 12: Original Iso-surface for 256 rocker arm
dataset.(1,350,292 triangles)

page. The polygon model was converted to a 512x512x512 distance
field using floating point data values. Table 3 shows triangles per
second results for the two datasets. The superior graphics perfor-
mance of the Onyx makes the drawing time equal to the culling and
priority recomputation time. On the Onyx drawing 50K triangles
takes about 0.05s. On the Octane the drawing time is about 4 times
as slow. When combined with the time for computing visibility and
priorities, this gives about a 2x increase in triangles per second.

Figure 12 shows the full resolution iso-surface of the rocker arm
dataset. Figures 13 and 14 show the triangulations of the dataset
rendered with pixel errors of 1.3 and 0.8 pixels respectively. Figure
1 show the igea dataset rendered at a screen error 0.56 pixels. En-
vironment mapping is used to texture the model.

Figure 12 shows the full resolution iso-surface of the rocker arm
dataset. Figures 13 and 14 show the triangulations of the dataset
rendered with pixel errors of 1.3 and 0.8 pixels.

8 Conclusions and Future Work

We have presented an algorithm for quickly extracting and render-
ing iso-surfaces from large volume datasets. Our algorithm ex-
tends a multi-resolution tetrahedral mesh based on edge bisection
to support adaptive refinement and coarsening. We have shown an
efficient way to encode the tets, parents, and children of the mesh
structure so that the mesh can be represented compactly and with
few pointers. The implementation of the dual queue split/merge al-
gorithm utilizes this new encoding of the mesh through the addition
of a queue hash table which enables the queues to be accessed by
view-dependent error and diamond indices. Our algorithm easily
integrates with other optimizations such as view-frustum culling,
deffered priority recomputation, and interpolation caching.

Areas for future work include: topology preserving and sim-
plification algorithms such as those presented in [Gerstner and Pa-

Figure 13: Iso-surface for 256> rocker arm. (Screen Error = 1.3
pixels)

Figure 14: Iso-surface for 256> rocker arm. (Screen Error = 0.8
pixels)




jarola 2000] into the refinement process; rendering multiple iso-
surfaces with transparency as well using volume rendering tech-
niques for image generation; and adapting the mesh structure and
refinement schemes to non power of two grids.
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